Kananaskis Country and it is through a system of integrated resource planning and management that this policy is implemented. A primary objective of the integrated planning and management system is to ensure that the natural resources in Kananaskis Country provide a wide range of outdoor recreation and development opportunities. As well, this system is intended to facilitate decision-making about the allocation of resource use by providing a mechanism for decision-making and process to ensure that feedback from the necessary interests is sought and utilized.

A preliminary investigation into the experiences of recreational and non-recreational users at the Lower Kananaskis River suggests that there are significant issues affecting not only the quality of visitor experiences and resources, but also the effectiveness of the existing policy, planning, and management frameworks to maintain the existing and future biophysical and social conditions at the river.

The purpose of this presentation is to explore these issues. The primary goal is to heighten the awareness of some of the opportunities and challenges that affect visitor experiences and resources at the Lower Kananaskis River, as well as the possible implications that these issues pose for current and future policy development, planning and management.

Challenges and Opportunities to Managing Recreation for the Georgian Bay Island Archipelago

Greg Mason
Department of Environment and Resource Studies
University of Waterloo

The eastern shoreline of Georgian Bay was recently established as an Enhanced Management Area called the Great Lakes Heritage Coast. This designation (introduced in Ontario’s Living Legacy Land Use Strategy, 1999) recognizes the diverse nature of the landscape and diverse uses for the planning area which stretches from Southeastern Georgian Bay to Northern Lake Superior. This land use designation presents some challenges and exciting opportunities for planning and management. Some of these issues will be discussed with reference to a preliminary recreation impact assessment performed on Franklin Island, Georgian Bay near Parry Sound.

Recreation and tourism has played an important economic and social role on Georgian Bay since the early 1900's beginning with cottages and fish camps, with increasing canoeing and kayaking, yachting, camping and day uses. Diverse users include local residents, cottagers, tourists and business operators, many of whom have a life long attachment to Georgian Bay.
Franklin Island has been designated as a conservation reserve with the option, during the planning process, to make it into a park. Because of these two potential designations and the quantity and diversity of use, Franklin Island presents a good case study for recreation impacts and potential management options for the greater Georgian Bay coast. Planning issues include type of protection, type of management (direct vs. indirect), and challenges such as diversity of uses and stakeholders. Finally, planners and managers are challenged by little understood ecosystem dynamics. This range of challenges for research, planning and management invites opportunities for learning, and for creating new partnerships for protection on Georgian Bay.

Assessment of Pre-Industrial Conditions and Long-Term Environmental Trends in Park Lakes

Sushil Dixit¹, Aruna Dixit¹, John Smol¹, Leslie Joynt², John Gunn¹, and Bill Keller³

¹ Pearl, Department of Biology, Queen’s University
² Ontario Parks, Killarney Provincial Park
³ Cooperative Freshwater Ecology Unit, Laurentian University

Paleoecological techniques offer a unique opportunity to obtain long-term environmental data for park lakes. These approaches are based on the interpretation of biological remains (e.g. diatom valves, chrysophyte scales) and geochemical indicators preserved in the different layers of sediment cores collected from the lakes. Our studies of algal microfossils in sediment cores from Killarney and Algonquin Provincial Parks were very effective in environmental monitoring and assessment because, in addition to characterizing the background or reference conditions, it was possible to assess deterioration and/or recovery in aquatic ecosystems, even when direct historical data were not available. These data answered questions related to lake acidification, metal contamination, climate change, and loss of fish. For example, in Killarney Park, acid sensitive lakes started to acidify in the 1930s and rapid acidification only occurred in the 1960s and 1970s. As the pH declined, lakewater aluminum concentrations greatly increased and some sport fisheries were extirpated. Although the lakes have acidified during this century, recent sediments of some lakes have shown signs of biological and chemical recovery as a result of recent reductions in SO2 emissions. We are presently conducting a more comprehensive project on three lakes in Killarney Park to develop 12,000- year record of ecosystem responses to environmental changes. These data will be communicated to the general public through interpretive media at the park.